4-Methoxy-1-methylpyridinium Iodide. Stevens Rearrangement of Borohydride Reduction Product

MIKIO TAKEDA,¹⁸ ARTHUR E. JACOBSON,^{1b} and EVERETTE L. MAY^{1b}

Laboratory of Chemistry, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethesda, Maryland 20014

Received April 23, 1969

Stevens rearrangement of 4-methoxy-1-p-methoxybenzyl-1-methyl-1,2,5,6-tetrahydropyridinium chloride (3) monohydrate, prepared from 4-methoxy-1-methylpyridinium iodide (1), has given ring-fission products, p-methoxybenzyl-N-methylamine (4), 3-methoxy-5-(N-p-methoxybenzyl-N-methyl)amino-1,3-pentadiene (5), and 5-(N-p-methoxybenzyl-N-methyl)amino-3-phenyl-1-penten-3-ol (9), in addition to 4-p-methoxybenzyl-1-methyl-2-phenyl-1,2,5,6-tetrahydropyridine (8) (a 1,4-rearrangement-addition product) and the desired 4-methoxy-2-p-methoxybenzyl-1-methyl-1,2,5,6-tetrahydropyridine (6). The nmr spectral properties of 6 were intimately compared with those of the corresponding Δ^4 isomer (10).²

In the foregoing paper,² 4-methoxy-2-*p*-methoxybenzyl-1-methyl-1,2,3,6-tetrahydropyridine (10, Δ^4 unsaturation) was described as an unexpected product from borohydride reduction of the corresponding 1,2dihydro compound. To establish the structure of 10 with greater certainty and to investigate alternative routes to 3-benzazocines (6,7-benzomorphans), the 1,2,5,6 (Δ^3) isomer (6) has been synthesized from 4methoxy-1-methylpyridinium iodide (1).

Reduction of 1 with sodium borohydride gave 4-methoxy-1-methyl-1,2,3,6-tetrahydropyridine (2), which was converted into a stable hydrate of quaternary salt 3, with *p*-methoxybenzyl chloride. Treatment of this hydrate with excess, ethereal phenyllithium produced a mixture³ which could be separated by thick layer chromatography into N-*p*-methoxybenzyl-N-methylamine (4), the 1,3-pentadiene (5),⁴ the expected 4-methoxy-2-*p*-methoxybenzyl-1-methyl-1,2,5,6-tetrahydropyridine (6), 4-*p*-methoxybenzyl-1methyl-2-phenyl-1,2,5,6-tetrahydropyridine (8), and the 1-penten-2-ol (9) (Scheme I)

The structure of 5, a Hofmann elimination product of 3, was assigned from spectral data. The secondary amine 4⁵ could arise from 5 during the work-up procedure via acid cleavage of the C-N linkage of 5 with formation of stabilized cation **A**, the product from which would be lost during further work-up. Alcohol 9, with the longest glpc retention time and highest boiling point of the five compounds isolated, could also derive from 5 through addition of phenyllithium to hypothetical ketone **B**, formed after enol ether hydrolysis of 5. Infrared absorption at 3.1-3.3 μ (OH), nmr chemical shifts for an ABX unsaturated system along with those for two aromatic rings, and other data were proof of structure 9 (see Scheme II and Experimental Section.

As for 8 (fourth in glpc retention time), nmr and mass spectral data indicated an additional, monosubstituted phenyl residue. A broad signal at 5.35 ppm (olefinic proton) which did not change on addition of trifluoroacetic acid, the uv spectrum $[\lambda_{max}^{EtOH} 235, 277, 284 \text{ m}\mu] (\epsilon$ 2800, 2350, 2080)], and an m/e of 293 for the molecular ion (172, base peak) provided the principal basis for its structure.⁶

Finally, the normal rearrangement product, 6, was found to be similar to the isomeric 10 in its ir (5.95μ) . enol ether)⁷ and mass $(m/e 247, M^+, 126)$, base peak for both 6 and $10)^8$ spectral characteristics. The nmr spectrum of 6 was similar to that of 10 in the chemical shifts for N-CH₃, aromatic O-CH₃, and aromatic protons. However, the signals for the protons of the allylic methylene group (at C-5 for 6 and C-3 for 10) and for the olefinic protons are distinctly different (Scheme III). The olefinic proton in 6 (δ 4.38 broad) is diamagnetically shifted 0.16-0.19 ppm compared with its normal position (δ 4.54–4.57, broad t, J = 3 Hz) in 10, 10a.² and 2, owing to the anisotropy effect of the aromatic The allylic (C-3) methylene protons of 10 and 10a ring. (at δ 1.87-2.10) were similarly affected by this anisotropy, being shifted diamagnetically by 0.2-0.3 ppm (12-18 Hz) compared with the C-5 methylene protons of 6 and 2 at 2.1-2.4. The broad triplet (olefinic proton) observed for 10a was resolved by double irradiation at 100 MHz. Decoupling by irradiation of the C-6 protons (about 3.15) collapsed the triplet to a singlet (broad owing to long-range coupling with the C-3 protons). When the C-3 protons were irradiated, the olefinic proton appeared as a much sharper triplet, J = 3 Hz. These data are consistent with a structure containing a double bond in the Δ^4 (4,5) position in 10a (and 10 because of the similarity of their nmr spectra). Thus, the double bond of **6** must be in the Δ^3 position.

Experimental Section⁹

4-Methoxy-1-methyl-1,2,3,6-tetrahydropyridine (2) Picrate. NaOH (1 N, 110 ml) was slowly added to a below $-15^{\circ 10}$ suspension of 1 (22.5 g) in methanol (35 ml). The ice bath was removed and NaBH₄ (6 g) was rapidly added. The temperature rose

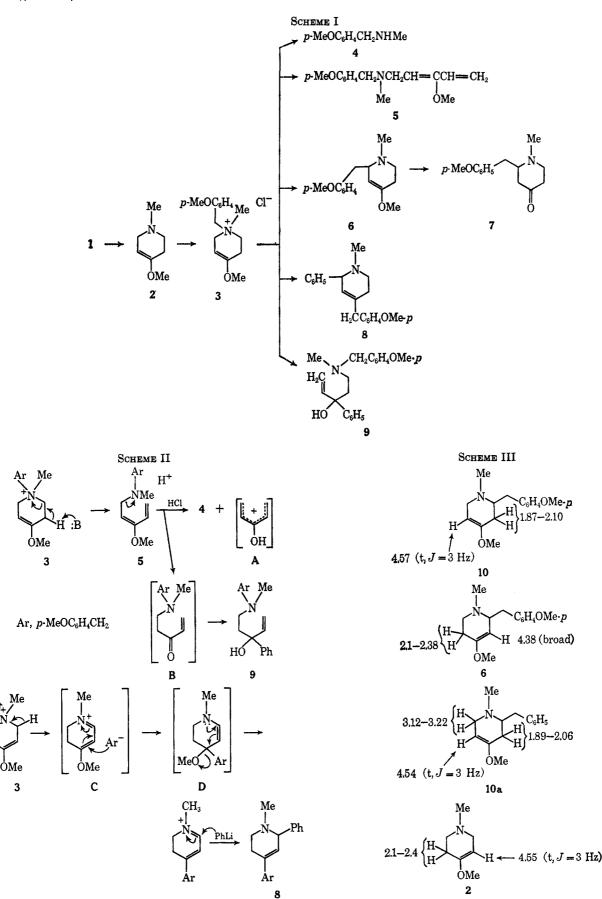
(6) These nmr and uv data, the latter showing no conjugated aryl chromophore, rule out Δ^2 unsaturation as well as reversed positions for the phenyl and *p*-methoxybenzyl groups. Other significant data, given in the Experimental Section, are consistent with **8**.

(7) Major differences were observable in the "fingerprint" region.

(8) Differences arose in the relative abundance of a few of the fragment ions.

^{(1) (}a) Visiting Fellow, 1968-1969. (b) To whom correspondence should be addressed.

⁽²⁾ M. Takeda, A. E. Jacobson, K. Kanematsu, and E. L. May, J. Org. Chem., 34, 4154 (1969).


⁽³⁾ Glpc examination showed five substances in ratios of 17:13:14:6:16 in the order of increasing retention time.

⁽⁴⁾ Presumably the solvate water of **3** which would convert the PhLi into LiOH was largely responsible for this product.

⁽⁵⁾ The structure was deduced from spectral data. The hydrochloride of 4 was reported by M. Tiffeneau, Bull. Soc. Chim. Fr., 9, 826 (1911); Chem. Abstr., 5, 3803 (1911).

⁽⁹⁾ See footnote 10 of ref 2. A Varian HA-100 instrument was used for 100-MHz spectra.

⁽¹⁰⁾ Higher temperatures or a larger amount of NaOH reduced the yield of 2 with increased formation of water-soluble materials. In one run, the aqueous layer (after ether extraction) gave on continuous methylene chloride extraction a 15% yield of 1-methyl-4(1H)pyridone: λ_{max}^{CHOI} 6.02 (sh), 6.09 and 6.35 (both strong) μ ; nmr 3.7 (s, 3, NCHs), 6.32 (d, 2, J = 7.5 Hz, C=CHC==O), 7.39 (d, 2, J = 7.5 Hz, NHC=C) ppm; m/e 109 (M⁺ and base); λ_{max}^{EtOH} 261.5 m μ , λ_{max}^{max}

slowly to 35° during 20 min, and the mixture was then heated at 70° for 90 min. The cooled mixture was saturated with NaCl and extracted with ether. Solvent was distilled at 740-760 mm (bath temperature <60°) to give 2 (10.2 g, 90%, bp 168-170°): $\lambda_{\rm max}^{\rm film} 5.95 \ \mu$ (enol ether); nmr 2.33 (s, 3, N-CH₃), 3.48

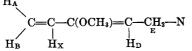
(s, 3, O–CH₈) ppm. A picrate was prepared in ether: needles, mp 109.5-111.5°

Anal. Calcd for $C_{19}H_{16}N_4O_8$: C, 43.82; H, 4.53; N, 15.73. Found: C, 43.83; H, 4.38; N, 15.90.

4-Methoxy-1-p-methoxybenzyl-1-methyl-1,2,3,6-tetrahydro-

pyridinium Chloride (3).—p-Methoxybenzyl chloride¹¹ (12.7 g) was added to 2 (10.2 g) in ether (100 ml)-acetone (30 ml), and the mixture was kept for 2 days at 25° , giving a hygroscopic solid (3, 18.2 g, 75%) which was washed with acetone-ether (1:1). HC=C), 7.12 and 7.57 (4, AA'BB' multiplet, JAB = 9.5 Hz, aromatic) ppm.

Anal. Caled for C₁₅H₂₂ClNO₂·H₂O: C, 59.69; H, 8.02; N, 4.64; Cl, 11.75. Found: C, 59.49; H, 8.03; N, 4.89; Cl, 11.90.12


Stevens Rearrangement of 3.—Phenyllithium (16 ml, 1.91 M)¹⁸ was rapidly added to a stirred suspension of **3** (hydrate, 4.5 g) in ether (10 ml). An exothermic reaction occurred, ebullition quickly subsiding. The mixture was stirred for 3 hr at 25°, poured into ice-water and extracted with ether. The ethereal solution was extracted, as rapidly as possible, with cold 1% HCl. The acidic extracts were washed with ether, basified with NH₄OH and extracted with ether. Removal of solvent from the dried (Na₂SO₄) ethereal extracts gave a red oil (2.23 g). The crude base was shown to be a mixture (by glpc) of what proved to be 4, 5, 6, 7, 8, and an unknown sixth compound in the ratio of 17:13:14:6:16:4, respectively. The various components were isolated from the mixture by repeated thick layer chromatography.

N-p-Methoxybenzylmethylamine (4).-The bottom fraction of the thick layer chromatographic plate gave 414 which was purified

the thick layer chromatographic plate gave 4⁻⁵ which was purhed as its hydrochloride, mp 174–176° (lit.⁵ mp 166°). Anal. Caled for C₉H₁₄ClNO: C, 57.60; H, 7.52; N, 7.47. Found: C, 57.47; H, 7.27; N, 7.67. The free base had $\lambda_{max}^{flm} 3.0 \ \mu$ (NH); nmr 1.90 (broad s, 1, NH); nmr 1.90 (broad s, 1,

NH disappeared on D₂O addition), 2.42 (s, 3, NCH₃), 3.67 (s, 2, PhCH2), 3.76 (s, 3, OCH3), 6.84 and 7.23 ppm (AA'BB' multiplet, 4, $J_{AB} = 8.5$ Hz, aromatic H's); m/e 151 (M⁺), 121 (base).

3-Methoxy-5-(N-p-methoxybenzyl-N-methyl)amino-1,3-pentadiene (5).—Compound 5¹⁶ was isolated as a colorless oil: bp 120– 140° (bath temperature), (0.1 mm); $\lambda_{\text{max}}^{\text{sim}}$ 6.05 (enol ether), 10.25 and 10.9 (CH=CH₂) μ ; $\lambda_{\text{max}}^{\text{EtOH}}$ 210, 228, 247, 281 m μ (ϵ 11500, 16,500, 12,800, 2050); nmr 2.20 (s, 3, NCH₃), 3.46 (s, 2, PhCH₂), 3.62 (s, 3 = COCH₃), 3.80 (s, 3, aromatic OCH₃), 6.84 and 7.24 (AA'BB' multiplet, 4, $J_{AB} = 8.5$ Hz, aromatic H's) ppm.

The following nmr data apply to the structure above: H_A , 5.61 (q, 1, $J_{AB} = 2$ Hz, $J_{AX} = 17$ Hz); H_B , 5.15 (q, 1, $J_{AB} = 2$ Hz, $J_{BX} = 11$ further split with 2 Hz coupling); H_X , 6.52 (q, 1, $J_{AX} = 17$ Hz, $J_{BX} = 11$ Hz); H_D , 4.80 (broad t, 1, $J_{DE} = 7.5$ Hz); H_E , 3.13 (d, 2, J = 7.5 Hz) ppm. Mass spectrum: m/e947 (ME) 121 (broad) 247 (M+), 121 (base).

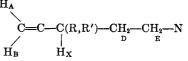
(11) Eastman Kodak Co. See also S. Saito and E. L. May, J. Org. Chem., 27, 948 (1962).

(12) After 8 was dried at 60° overnight in vacuo its ir spectrum still indicated the presence of hydrate H₂O.

- (13) Alfa Inorganics, Inc., 70:30 benzene -ether
- (14) Lowest boiling point, 20 sec glpc (160°) retention time.
- (15) Three-minute (160°) glpc retention time, next to highest the R_f value.

Anal. Calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.58; H, 8.62; N, 5.90.

4-Methoxy-2-p-methoxybenzyl-1-methyl-1,2,5,6-tetrahydro-pyridine (6) Picrate.¹⁶—A picrate was prepared and recrystallized from acetone to give cubes, mp 162–163°. *Anal.* Calcd for $C_{21}H_{24}N_4O_9$: C, 52.94; H, 5.08; N, 11.76.


Found: C, 53.22; H, 4.88; N, 11.75. The free base had $\lambda_{max}^{lim} 5.95 \mu$ (enol ether); nmr 2.48 (s, 3, NCH₃), 3.42 (s, 3, C=C-OCH₃), 3.76 (s, 3, aromatic OCH₃), 6.82 and 7.12 (AA'BB' multiplet, 4, $J_{AB} = 8.5$ Hz) ppm (see text for other chemical shifts).

Compound 6 was hydrolyzed (6 N HCl) to the known² 7, isolated as the picrate, in 90% yield.

4-p-Methoxybenzyl-1-methyl-2-phenyl-1,2,5,6-tetrahydropyridine (8).¹⁷—A mixture of 8 and 9, inseparable by silica gel tlc, was separated by alumina thick layer chromatography. Compound 8 was distilled [200-220°, bath temperature (0.3 mm)]; $\lambda_{\text{max}}^{\text{EtOH}}$ 235, 277, 284 m μ (ϵ 2800, 2350, 2080); nmr 2.16 (s, 3, NCH₃), 3.28 (broad s, 2, PhCH₂), 3.77 (s, 3, OCH₃), 5.35 (broad, 1, C=CH), 6.82 and 7.12 (AA'BB' multiplet, 4, J_{AB} = 8.7 Hz), and 7.32 (s, 5, monosubstituted phenyl) ppm; nmr $(CF_{2}CO_{2}D)$ 2.98 (s, 3, NCH₂), 3.57 (s, broad, 2, CH₂Ph), 4.0 (s, 3, OCH₂), 5.62 (broad, 1, C=CH), 7.08 and 7.32 (AA'BB' multiplet, 4, $J_{AB} = 8.5$ Hz), and 7.52 (s, 5, monosubstituted phenyl) ppm; m/e 293 (M⁺), 172 (base).

Anal. Calcd for $C_{20}H_{23}NO$: C, 81.87; H, 7.90; N, 4.77. Found: C, 81.51; H, 7.90; N, 4.97.

5- (N-p-Methoxybenzyl-N-methyl) a mino-3-phenyl-1-penten-3-ol(9).¹⁸—The base 9 was isolated as a colorless oil and distilled [bath temperature, 240°, (0.8 mm)]: $\lambda_{\text{max}}^{\text{film}}$ 3.1–3.3 (OH), 10.15, 10.95 (CH==CH₂) μ ; $\lambda_{\text{max}}^{\text{EOH}}$ 219, 275, 281 m μ (ϵ 13,000, 2640, 2440); nmr 2.13 (s, 3, NCH₃), 3.39 (s, 2, PhCH₂), 3.79 (s, 3, CH) = 0.000 \text{ M}^{-1} OCH_3), 6.86 and 7.23 (AA'BB' multiplet, 4, $J_{AB} = 9$ Hz), 7.2-7.5 (m, 5, monosubstituted phenyl) ppm. The following nmr

data apply to the structure above: H_A , 5.36 (q, 1, $J_{AX} = 16.8$ Hz, $J_{AB} = 2$ Hz); H_B , 5.08 (q, 1, $J_{AB} = 2$ Hz, $J_{BX} = 10.6$ Hz); H_X, 6.14 (q, 1, $J_{BX} = 10.6$ Hz, $J_{AX} = 16.8$ Hz); H_D, 1.95– 2.2 (2 H); H_E 2.58 (two doublets, 2, J = 5 Hz, J = 11 Hz) ppm. Mass spectrum: m/e 311 (M⁺), 121 (base). Anal. Calcd for C₂₀H₂₅NO₂: C, 77.13; H, 8.09; N, 4.50.

Found: C, 76.86; H, 8.27; N, 4.43.

Registry No.—Sodium borohydride, 1303-74-8; 1, 21823-37-0; 2 (picrate), 21823-38-1; 3, 21823-39-2, 4, 702-24-9; 5, 21823-41-6; 6, 21823-42-7; 6 (picrate), 21823-43-8; 8, 21823-44-9; 9, 21823-45-0.

Acknowledgment.—The authors wish to thank Dr. R. J. Highet and Mr. E. Sokoloski, National Heart Institute, NIH, for the 100-MHz, double-irradiation spectra.

(16) Glpc retention time 3.5 min (160°), middle tlc fraction.

- (17) Glpc retention time 2.8 min (200°), highest R_f on tlc.
- (18) Retention time 3.4 min at 200°.